(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: Double2
/**
* A recursive loop.
*
* All calls terminate.
*
* Julia + BinTerm prove that all calls terminate.
*
* @author <A HREF="mailto:fausto.spoto@univr.it">Fausto Spoto</A>
*/

public class Double2 {
private static void test(int n) {
for (int i = n - 1; i >= 0; i--)
test(i);
}

public static void main(String[] args) {
test(10);
}
}

(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
Double2.main([Ljava/lang/String;)V: Graph of 31 nodes with 0 SCCs.

Double2.test(I)V: Graph of 18 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: Double2.test(I)V
SCC calls the following helper methods: Double2.test(I)V
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 16 rules for P and 2 rules for R.


P rules:
215_0_test_ConstantStackPush(EOS(STATIC_215), i14) → 217_0_test_IntArithmetic(EOS(STATIC_217), i14, 1)
217_0_test_IntArithmetic(EOS(STATIC_217), i14, matching1) → 219_0_test_Store(EOS(STATIC_219), -(i14, 1)) | =(matching1, 1)
219_0_test_Store(EOS(STATIC_219), i15) → 220_0_test_Load(EOS(STATIC_220), i15)
220_0_test_Load(EOS(STATIC_220), i15) → 223_0_test_LT(EOS(STATIC_223), i15, i15)
223_0_test_LT(EOS(STATIC_223), i19, i19) → 226_0_test_LT(EOS(STATIC_226), i19, i19)
226_0_test_LT(EOS(STATIC_226), i19, i19) → 229_0_test_Load(EOS(STATIC_229), i19) | >=(i19, 0)
229_0_test_Load(EOS(STATIC_229), i19) → 233_0_test_InvokeMethod(EOS(STATIC_233), i19, i19)
233_0_test_InvokeMethod(EOS(STATIC_233), i19, i19) → 238_1_test_InvokeMethod(238_0_test_Load(EOS(STATIC_238), i19), i19, i19)
238_0_test_Load(EOS(STATIC_238), i19) → 244_0_test_Load(EOS(STATIC_244), i19)
238_1_test_InvokeMethod(228_0_test_Return(EOS(STATIC_228)), i22, i22) → 250_0_test_Return(EOS(STATIC_250), i22, i22)
244_0_test_Load(EOS(STATIC_244), i19) → 213_0_test_Load(EOS(STATIC_213), i19)
213_0_test_Load(EOS(STATIC_213), i14) → 215_0_test_ConstantStackPush(EOS(STATIC_215), i14)
250_0_test_Return(EOS(STATIC_250), i22, i22) → 251_0_test_Inc(EOS(STATIC_251), i22)
251_0_test_Inc(EOS(STATIC_251), i22) → 253_0_test_JMP(EOS(STATIC_253), +(i22, -1)) | >=(i22, 0)
253_0_test_JMP(EOS(STATIC_253), i23) → 256_0_test_Load(EOS(STATIC_256), i23)
256_0_test_Load(EOS(STATIC_256), i23) → 220_0_test_Load(EOS(STATIC_220), i23)
R rules:
223_0_test_LT(EOS(STATIC_223), i18, i18) → 225_0_test_LT(EOS(STATIC_225), i18, i18)
225_0_test_LT(EOS(STATIC_225), i18, i18) → 228_0_test_Return(EOS(STATIC_228)) | <(i18, 0)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
215_0_test_ConstantStackPush(EOS(STATIC_215), x0) → 238_1_test_InvokeMethod(215_0_test_ConstantStackPush(EOS(STATIC_215), -(x0, 1)), -(x0, 1), -(x0, 1)) | >(+(x0, 1), 1)
238_1_test_InvokeMethod(228_0_test_Return(EOS(STATIC_228)), x0, x0) → 238_1_test_InvokeMethod(215_0_test_ConstantStackPush(EOS(STATIC_215), +(x0, -1)), +(x0, -1), +(x0, -1)) | >(+(x0, 1), 1)
R rules:

Filtered ground terms:



215_0_test_ConstantStackPush(x1, x2) → 215_0_test_ConstantStackPush(x2)
Cond_238_1_test_InvokeMethod(x1, x2, x3, x4) → Cond_238_1_test_InvokeMethod(x1, x3, x4)
228_0_test_Return(x1) → 228_0_test_Return
Cond_215_0_test_ConstantStackPush(x1, x2, x3) → Cond_215_0_test_ConstantStackPush(x1, x3)

Filtered duplicate args:



238_1_test_InvokeMethod(x1, x2, x3) → 238_1_test_InvokeMethod(x1, x3)
Cond_238_1_test_InvokeMethod(x1, x2, x3) → Cond_238_1_test_InvokeMethod(x1, x3)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
215_0_test_ConstantStackPush(x0) → 238_1_test_InvokeMethod(215_0_test_ConstantStackPush(-(x0, 1)), -(x0, 1)) | >(x0, 0)
238_1_test_InvokeMethod(228_0_test_Return, x0) → 238_1_test_InvokeMethod(215_0_test_ConstantStackPush(+(x0, -1)), +(x0, -1)) | >(x0, 0)
R rules:

Finished conversion. Obtained 6 rules for P and 0 rules for R. System has predefined symbols.


P rules:
215_0_TEST_CONSTANTSTACKPUSH(x0) → COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0, 0), x0)
COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0, 1)), -(x0, 1))
COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0) → 215_0_TEST_CONSTANTSTACKPUSH(-(x0, 1))
238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0) → COND_238_1_TEST_INVOKEMETHOD(>(x0, 0), 228_0_test_Return, x0)
COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0, -1)), +(x0, -1))
COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0) → 215_0_TEST_CONSTANTSTACKPUSH(+(x0, -1))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 215_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_215_0_TEST_CONSTANTSTACKPUSH(x0[0] > 0, x0[0])
(1): COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(x0[1] - 1), x0[1] - 1)
(2): COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2]) → 215_0_TEST_CONSTANTSTACKPUSH(x0[2] - 1)
(3): 238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3]) → COND_238_1_TEST_INVOKEMETHOD(x0[3] > 0, 228_0_test_Return, x0[3])
(4): COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[4]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(x0[4] + -1), x0[4] + -1)
(5): COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[5]) → 215_0_TEST_CONSTANTSTACKPUSH(x0[5] + -1)

(0) -> (1), if (x0[0] > 0x0[0]* x0[1])


(0) -> (2), if (x0[0] > 0x0[0]* x0[2])


(1) -> (3), if (215_0_test_ConstantStackPush(x0[1] - 1) →* 228_0_test_Returnx0[1] - 1* x0[3])


(2) -> (0), if (x0[2] - 1* x0[0])


(3) -> (4), if (x0[3] > 0x0[3]* x0[4])


(3) -> (5), if (x0[3] > 0x0[3]* x0[5])


(4) -> (3), if (215_0_test_ConstantStackPush(x0[4] + -1) →* 228_0_test_Returnx0[4] + -1* x0[3])


(5) -> (0), if (x0[5] + -1* x0[0])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@1a46a171 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 215_0_TEST_CONSTANTSTACKPUSH(x0) → COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0, 0), x0) the following chains were created:
  • We consider the chain 215_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0]), COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1)) which results in the following constraint:

    (1)    (>(x0[0], 0)=TRUEx0[0]=x0[1]215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])∧(UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])∧(UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)



  • We consider the chain 215_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0]), COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2]) → 215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1)) which results in the following constraint:

    (7)    (>(x0[0], 0)=TRUEx0[0]=x0[2]215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])∧(UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (7) using rule (IV) which results in the following new constraint:

    (8)    (>(x0[0], 0)=TRUE215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])∧(UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)







For Pair COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0, 1)), -(x0, 1)) the following chains were created:
  • We consider the chain COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1)) which results in the following constraint:

    (13)    (COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1])≥NonInfC∧COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1])≥238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))∧(UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥))



    We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (14)    ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[bni_16] = 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (15)    ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[bni_16] = 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (16)    ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[bni_16] = 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (16) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (17)    ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[bni_16] = 0∧0 = 0∧[(-1)bso_17] ≥ 0)







For Pair COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0) → 215_0_TEST_CONSTANTSTACKPUSH(-(x0, 1)) the following chains were created:
  • We consider the chain COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2]) → 215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1)) which results in the following constraint:

    (18)    (COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2])≥NonInfC∧COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2])≥215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))∧(UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥))



    We simplified constraint (18) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (19)    ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (19) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (20)    ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (21)    ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (21) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (22)    ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[bni_18] = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)







For Pair 238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0) → COND_238_1_TEST_INVOKEMETHOD(>(x0, 0), 228_0_test_Return, x0) the following chains were created:
  • We consider the chain 238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3]) → COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3]), COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[4]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1)) which results in the following constraint:

    (23)    (>(x0[3], 0)=TRUEx0[3]=x0[4]238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥NonInfC∧238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])∧(UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥))



    We simplified constraint (23) using rule (IV) which results in the following new constraint:

    (24)    (>(x0[3], 0)=TRUE238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥NonInfC∧238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])∧(UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥))



    We simplified constraint (24) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (25)    (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (25) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (26)    (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (26) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (27)    (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (27) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (28)    (x0[3] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(3)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



  • We consider the chain 238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3]) → COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3]), COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[5]) → 215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1)) which results in the following constraint:

    (29)    (>(x0[3], 0)=TRUEx0[3]=x0[5]238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥NonInfC∧238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])∧(UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥))



    We simplified constraint (29) using rule (IV) which results in the following new constraint:

    (30)    (>(x0[3], 0)=TRUE238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥NonInfC∧238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])∧(UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥))



    We simplified constraint (30) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (31)    (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (31) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (32)    (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (32) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (33)    (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (34)    (x0[3] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(3)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)







For Pair COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0, -1)), +(x0, -1)) the following chains were created:
  • We consider the chain COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[4]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1)) which results in the following constraint:

    (35)    (COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[4])≥NonInfC∧COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[4])≥238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))∧(UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥))



    We simplified constraint (35) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (36)    ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (36) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (37)    ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (37) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (38)    ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (38) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (39)    ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[bni_22] = 0∧0 = 0∧[(-1)bso_23] ≥ 0)







For Pair COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0) → 215_0_TEST_CONSTANTSTACKPUSH(+(x0, -1)) the following chains were created:
  • We consider the chain COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[5]) → 215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1)) which results in the following constraint:

    (40)    (COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[5])≥NonInfC∧COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[5])≥215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))∧(UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥))



    We simplified constraint (40) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (41)    ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[bni_24] = 0∧[1 + (-1)bso_25] ≥ 0)



    We simplified constraint (41) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (42)    ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[bni_24] = 0∧[1 + (-1)bso_25] ≥ 0)



    We simplified constraint (42) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (43)    ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[bni_24] = 0∧[1 + (-1)bso_25] ≥ 0)



    We simplified constraint (43) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (44)    ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[bni_24] = 0∧0 = 0∧[1 + (-1)bso_25] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 215_0_TEST_CONSTANTSTACKPUSH(x0) → COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0, 0), x0)
    • (x0[0] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
    • (x0[0] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)

  • COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0, 1)), -(x0, 1))
    • ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[bni_16] = 0∧0 = 0∧[(-1)bso_17] ≥ 0)

  • COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0) → 215_0_TEST_CONSTANTSTACKPUSH(-(x0, 1))
    • ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[bni_18] = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)

  • 238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0) → COND_238_1_TEST_INVOKEMETHOD(>(x0, 0), 228_0_test_Return, x0)
    • (x0[3] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(3)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
    • (x0[3] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(3)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)

  • COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0, -1)), +(x0, -1))
    • ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[bni_22] = 0∧0 = 0∧[(-1)bso_23] ≥ 0)

  • COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0) → 215_0_TEST_CONSTANTSTACKPUSH(+(x0, -1))
    • ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[bni_24] = 0∧0 = 0∧[1 + (-1)bso_25] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(215_0_TEST_CONSTANTSTACKPUSH(x1)) = [1] + x1   
POL(COND_215_0_TEST_CONSTANTSTACKPUSH(x1, x2)) = [1] + x2   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(238_1_TEST_INVOKEMETHOD(x1, x2)) = [2] + x2   
POL(215_0_test_ConstantStackPush(x1)) = x1   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   
POL(228_0_test_Return) = [-1]   
POL(COND_238_1_TEST_INVOKEMETHOD(x1, x2, x3)) = [1] + x3   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   

The following pairs are in P>:

COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2]) → 215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))
238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3]) → COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])
COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[5]) → 215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))

The following pairs are in Pbound:

215_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])
238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3]) → COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])

The following pairs are in P:

215_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])
COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))
COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[4]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))

There are no usable rules.

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 215_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_215_0_TEST_CONSTANTSTACKPUSH(x0[0] > 0, x0[0])
(1): COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(x0[1] - 1), x0[1] - 1)
(4): COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[4]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(x0[4] + -1), x0[4] + -1)

(0) -> (1), if (x0[0] > 0x0[0]* x0[1])



The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(11) TRUE

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(x0[1] - 1), x0[1] - 1)
(2): COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2]) → 215_0_TEST_CONSTANTSTACKPUSH(x0[2] - 1)
(4): COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[4]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(x0[4] + -1), x0[4] + -1)
(5): COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[5]) → 215_0_TEST_CONSTANTSTACKPUSH(x0[5] + -1)


The set Q is empty.

(13) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 4 less nodes.

(14) TRUE