0 JBC
↳1 JBCToGraph (⇒, 70 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 70 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 230 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* A recursive loop.
*
* All calls terminate.
*
* Julia + BinTerm prove that all calls terminate.
*
* @author <A HREF="mailto:fausto.spoto@univr.it">Fausto Spoto</A>
*/
public class Double2 {
private static void test(int n) {
for (int i = n - 1; i >= 0; i--)
test(i);
}
public static void main(String[] args) {
test(10);
}
}
Generated 16 rules for P and 2 rules for R.
P rules:
215_0_test_ConstantStackPush(EOS(STATIC_215), i14) → 217_0_test_IntArithmetic(EOS(STATIC_217), i14, 1)
217_0_test_IntArithmetic(EOS(STATIC_217), i14, matching1) → 219_0_test_Store(EOS(STATIC_219), -(i14, 1)) | =(matching1, 1)
219_0_test_Store(EOS(STATIC_219), i15) → 220_0_test_Load(EOS(STATIC_220), i15)
220_0_test_Load(EOS(STATIC_220), i15) → 223_0_test_LT(EOS(STATIC_223), i15, i15)
223_0_test_LT(EOS(STATIC_223), i19, i19) → 226_0_test_LT(EOS(STATIC_226), i19, i19)
226_0_test_LT(EOS(STATIC_226), i19, i19) → 229_0_test_Load(EOS(STATIC_229), i19) | >=(i19, 0)
229_0_test_Load(EOS(STATIC_229), i19) → 233_0_test_InvokeMethod(EOS(STATIC_233), i19, i19)
233_0_test_InvokeMethod(EOS(STATIC_233), i19, i19) → 238_1_test_InvokeMethod(238_0_test_Load(EOS(STATIC_238), i19), i19, i19)
238_0_test_Load(EOS(STATIC_238), i19) → 244_0_test_Load(EOS(STATIC_244), i19)
238_1_test_InvokeMethod(228_0_test_Return(EOS(STATIC_228)), i22, i22) → 250_0_test_Return(EOS(STATIC_250), i22, i22)
244_0_test_Load(EOS(STATIC_244), i19) → 213_0_test_Load(EOS(STATIC_213), i19)
213_0_test_Load(EOS(STATIC_213), i14) → 215_0_test_ConstantStackPush(EOS(STATIC_215), i14)
250_0_test_Return(EOS(STATIC_250), i22, i22) → 251_0_test_Inc(EOS(STATIC_251), i22)
251_0_test_Inc(EOS(STATIC_251), i22) → 253_0_test_JMP(EOS(STATIC_253), +(i22, -1)) | >=(i22, 0)
253_0_test_JMP(EOS(STATIC_253), i23) → 256_0_test_Load(EOS(STATIC_256), i23)
256_0_test_Load(EOS(STATIC_256), i23) → 220_0_test_Load(EOS(STATIC_220), i23)
R rules:
223_0_test_LT(EOS(STATIC_223), i18, i18) → 225_0_test_LT(EOS(STATIC_225), i18, i18)
225_0_test_LT(EOS(STATIC_225), i18, i18) → 228_0_test_Return(EOS(STATIC_228)) | <(i18, 0)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
215_0_test_ConstantStackPush(EOS(STATIC_215), x0) → 238_1_test_InvokeMethod(215_0_test_ConstantStackPush(EOS(STATIC_215), -(x0, 1)), -(x0, 1), -(x0, 1)) | >(+(x0, 1), 1)
238_1_test_InvokeMethod(228_0_test_Return(EOS(STATIC_228)), x0, x0) → 238_1_test_InvokeMethod(215_0_test_ConstantStackPush(EOS(STATIC_215), +(x0, -1)), +(x0, -1), +(x0, -1)) | >(+(x0, 1), 1)
R rules:
Filtered ground terms:
215_0_test_ConstantStackPush(x1, x2) → 215_0_test_ConstantStackPush(x2)
Cond_238_1_test_InvokeMethod(x1, x2, x3, x4) → Cond_238_1_test_InvokeMethod(x1, x3, x4)
228_0_test_Return(x1) → 228_0_test_Return
Cond_215_0_test_ConstantStackPush(x1, x2, x3) → Cond_215_0_test_ConstantStackPush(x1, x3)
Filtered duplicate args:
238_1_test_InvokeMethod(x1, x2, x3) → 238_1_test_InvokeMethod(x1, x3)
Cond_238_1_test_InvokeMethod(x1, x2, x3) → Cond_238_1_test_InvokeMethod(x1, x3)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
215_0_test_ConstantStackPush(x0) → 238_1_test_InvokeMethod(215_0_test_ConstantStackPush(-(x0, 1)), -(x0, 1)) | >(x0, 0)
238_1_test_InvokeMethod(228_0_test_Return, x0) → 238_1_test_InvokeMethod(215_0_test_ConstantStackPush(+(x0, -1)), +(x0, -1)) | >(x0, 0)
R rules:
Finished conversion. Obtained 6 rules for P and 0 rules for R. System has predefined symbols.
P rules:
215_0_TEST_CONSTANTSTACKPUSH(x0) → COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0, 0), x0)
COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0, 1)), -(x0, 1))
COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0) → 215_0_TEST_CONSTANTSTACKPUSH(-(x0, 1))
238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0) → COND_238_1_TEST_INVOKEMETHOD(>(x0, 0), 228_0_test_Return, x0)
COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0, -1)), +(x0, -1))
COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0) → 215_0_TEST_CONSTANTSTACKPUSH(+(x0, -1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x0[0] > 0 ∧x0[0] →* x0[1])
(0) -> (2), if (x0[0] > 0 ∧x0[0] →* x0[2])
(1) -> (3), if (215_0_test_ConstantStackPush(x0[1] - 1) →* 228_0_test_Return∧x0[1] - 1 →* x0[3])
(2) -> (0), if (x0[2] - 1 →* x0[0])
(3) -> (4), if (x0[3] > 0 ∧x0[3] →* x0[4])
(3) -> (5), if (x0[3] > 0 ∧x0[3] →* x0[5])
(4) -> (3), if (215_0_test_ConstantStackPush(x0[4] + -1) →* 228_0_test_Return∧x0[4] + -1 →* x0[3])
(5) -> (0), if (x0[5] + -1 →* x0[0])
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])∧(UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ 215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])∧(UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(7) (>(x0[0], 0)=TRUE∧x0[0]=x0[2] ⇒ 215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])∧(UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥))
(8) (>(x0[0], 0)=TRUE ⇒ 215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧215_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])∧(UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥))
(9) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(10) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(11) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(12) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(13) (COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1])≥NonInfC∧COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1])≥238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))∧(UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥))
(14) ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[bni_16] = 0∧[(-1)bso_17] ≥ 0)
(15) ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[bni_16] = 0∧[(-1)bso_17] ≥ 0)
(16) ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[bni_16] = 0∧[(-1)bso_17] ≥ 0)
(17) ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[bni_16] = 0∧0 = 0∧[(-1)bso_17] ≥ 0)
(18) (COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2])≥NonInfC∧COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2])≥215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))∧(UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥))
(19) ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)
(20) ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)
(21) ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)
(22) ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[bni_18] = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)
(23) (>(x0[3], 0)=TRUE∧x0[3]=x0[4] ⇒ 238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥NonInfC∧238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])∧(UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥))
(24) (>(x0[3], 0)=TRUE ⇒ 238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥NonInfC∧238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])∧(UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥))
(25) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(26) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(27) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(28) (x0[3] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(3)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(29) (>(x0[3], 0)=TRUE∧x0[3]=x0[5] ⇒ 238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥NonInfC∧238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])∧(UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥))
(30) (>(x0[3], 0)=TRUE ⇒ 238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥NonInfC∧238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3])≥COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])∧(UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥))
(31) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(32) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(33) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(34) (x0[3] ≥ 0 ⇒ (UIncreasing(COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])), ≥)∧[(3)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(35) (COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[4])≥NonInfC∧COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[4])≥238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))∧(UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥))
(36) ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)
(37) ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)
(38) ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)
(39) ((UIncreasing(238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[bni_22] = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(40) (COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[5])≥NonInfC∧COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[5])≥215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))∧(UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥))
(41) ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[bni_24] = 0∧[1 + (-1)bso_25] ≥ 0)
(42) ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[bni_24] = 0∧[1 + (-1)bso_25] ≥ 0)
(43) ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[bni_24] = 0∧[1 + (-1)bso_25] ≥ 0)
(44) ((UIncreasing(215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[bni_24] = 0∧0 = 0∧[1 + (-1)bso_25] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(215_0_TEST_CONSTANTSTACKPUSH(x1)) = [1] + x1
POL(COND_215_0_TEST_CONSTANTSTACKPUSH(x1, x2)) = [1] + x2
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(238_1_TEST_INVOKEMETHOD(x1, x2)) = [2] + x2
POL(215_0_test_ConstantStackPush(x1)) = x1
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(228_0_test_Return) = [-1]
POL(COND_238_1_TEST_INVOKEMETHOD(x1, x2, x3)) = [1] + x3
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2]) → 215_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))
238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3]) → COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])
COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[5]) → 215_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))
215_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])
238_1_TEST_INVOKEMETHOD(228_0_test_Return, x0[3]) → COND_238_1_TEST_INVOKEMETHOD(>(x0[3], 0), 228_0_test_Return, x0[3])
215_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_215_0_TEST_CONSTANTSTACKPUSH(>(x0[0], 0), x0[0])
COND_215_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))
COND_238_1_TEST_INVOKEMETHOD(TRUE, 228_0_test_Return, x0[4]) → 238_1_TEST_INVOKEMETHOD(215_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x0[0] > 0 ∧x0[0] →* x0[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer